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Abstract. Plane waves on symmetric spaces (S5)= SU(p,q)/SU(p) ® U(g)), p <
qg=23,..., are constructed. The integrablebody quantum systems related to &Sare
considered.

1. Introduction

This paper is a continuation of the paper concerning the plane waves and integrable quantum
systems of the grougO(p, g) [1]. Hence, we refer to this reference for details. Here

we have considered the spaces related with Cartan involutive automorphism of the group
U(p,q),p < g = 2,3,..., namely the symmetric Riemannian and pseudo-Riemannian
spaces with rank equal to =1, 2, . ..

X.=S8U(p.q)/SW(p)®U(qg)) Z.=U(p,/UDRUP-149.

We construct the plane waves on S§& and Z. and calculate Harish—Chandrats
functions. Here we give an example of the integrable quantum system related to SS,
SU(2,2)/S(U(2) @ U(2).

The paper is organized as follows. In section 2 for completeness and to fix the notation
we construct the plane waves on SS with rank 1 and give the expression for the Harish—
Chandrac-functions. In section 3 the main result on construction of the plane waves
on SS with rankp > 1 and consideration of integrable quantum systems related to SS
SU(2,2)/S(U(2) ® U(2)) are presented.

2. Plane waves on SS of rank 1 of the groupJ(p, 9), p<q

In this section we construct plane waves on SS defined by quadratic forms in the space
CcPre,
2.1. Plane waves on SS of the grauigl, q)

We use the notation = (2o, z1, ..., z¢) for the elements of am(= 1+ g)-dimensional
complex vector spac€?. In C1¢ we define the bilinear product [z'] = z0Zy — 217} —

1 On leave of absence from the Physical Institute of the Academy of Science of Azerbaijan Republic.
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.-+ — z42,. Pointsz such that {,z] = 1 form a complex hyperboloidi! in C*¢. The
stabilizer ofz = (1,0, ...,0) € H coincides with the subgroufi (¢). Therefore,

HI ~U(L.q)/U(q). (2.1)
Every pointz € H! is representable in the form

7= (ei“’ogo, ei“’lgl, e ei“’”gq) where 0< ¢; < 27, ¢, >0

i=012..,9.¢=(01...,6) (2.2)

is the point of the real hyperboloid[¢] = ¢5 — - — g2 = 1. From cosltr = Ref, =
cosgqco it follows that the distance has real and imaginary parts. Hence the #ffacea
symmetric pseudo-Riemannian space. This fact can be seen by identifying theC8gace
with the pseudo-Euclidean spa®é2. Then we have

U,q)/U(q) ~ SO(2,29)/SO(1, 29). (2.3)
By identifying the points €z, 0 < ¢ < 27, of H! we have obtained a symmetric
Riemannian space:

X.~U@L,q)/UQ) xU(g) = SUQ, q)/SWUQD) x U(g)). (2.4)
Indeed, the transitive motion group of coincides with SU(1,¢). The subgroup

S(U) x U(g)) is the stabilizer of the poink = (€¥,0,...,0) € X.. Every point
x € X, is representable of the form

x = (50, €61, ..., €%¢,). (2.5)
The distance between points= (1,0, ..., 0) andx defined by the formula
coshkr = Refx, x] = ¢o > 1. (2.6)

Points y € C%¢ for which [y,y] = 0, form the complex cong, in C'?. Every
point y € C14 is representable in the form

y = (ei“’ovo, €1y, ...,ej“"'vq) where 0< ¢; < 27,1, >20,i =0,1,...,4. 2.7)

v = (o, V1, ..., Vy) iS the point real con&:[v, v] = 0.

The maximal degenerate representation of the groip, ¢) can be constructed in
the spaceD, of infinitely differentiable homogeneity function8(y) with homogeneously
degrees on a coneY, [2]:

F(ay) = a’ F(y) a>0 yeve (2.8)
and with conditionF (uy) = F(y), |u| = 1. The representation
T, () F(y) = F(yg) g€SU1 q) (2.9)

can be realized in the space of infinitely differentiable functions on intersections of the cone,
for example on the complex sphefé’l =SU(q)/SU(g — 1):
T5(8) f(s) = I(sg)|° f(58) g§€SUMq) (2.10)
wheres = yly=1 =1, n), y = ed®s, e Sg_l, sg =sg/(sg)o.
Fromy' = yg we have
|(s8)o| = & 58 = (1, ny). (2.11)

The representatiofi, (g), g € SU(1, g), is a unitary representation with respect to the scalar
product

(f1. f2) =/f1(77)fz(n)dn (2.12)
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where @ is an invariant volume otf,, if 0 = —g +ip, p € [0, c0) (the principal series).
Indeed from the relations

Y =g = ¥ = yolsg)o = € €% = &"*(sg)o

and from the invariant of the volume element Bn dy = dy’, where d» = €49%da dgg dn,
we have

dn = |(sg)ol®dr’. (2.13)

It follows that the invariant condition of the scalar prody¢t, f>) under the representation
equation (2.10) is +0 +29 = 0. The representatior’ (g) andD_»,_,(g), g € SU(1, q)
are equivalent.

As in the case of the groufO (1, ¢) [1] we find that the zonal spherical functions of
the representatioffi, (¢), g € SU(1, g) are given by the formula

T5,.0,(8x) = / ) [[x, s]|° dn x € Xe. (2.14)
N

Here|Oy) is the invariant vector with respect to the representation
Ty (k), k € U(L) x U(q).

The plane wavedx, s]|° are the eigenfunctions of the Laplace—Beltrami operator on the
SSX.:

Apllx,s]l” = —o (o +29)|[x, s]I°. (2.19)

The zonal spherical functioriEgk;Ok (a(a)) satisfy the equation

d . d
(Slnhzqada Slnhzq Olda> tgk§0k (a(a)) = U(U + Zq)tgk:ok (a(oz)) (216)

for the Harish—Chandra-function from (2.14) we have the integral representation

2t p2n _
C(o) =/ / 11— € cosg|” sint? 3 cosd db dg. (2.17)
0 0
Calculation of this integral was done by Helgason [3]:
(=0 —¢q)
Clo)= —— . 2.18
@)= [P0/ (&55)

The orthogonality and completeness conditions for the plane waves df $6the group
U(1, 2) are similar to those of the plane waves on $%f the groupSO(1, q).

To construct the plane waves on S%&’ we consider the representatidh ,(g),
g € U(L, g) in the spaceD, ,, of the functionsF (y), y € Y. with the condition [2]

F(uy) =u"F(y) lul =1 (2.19)

where m is an integer. The zonal spherical function of the representalipn(g),
g € U(1, q), has the form

15", (do(€)a(e)) = "™ 13", (a(e)) (2.20)

wheredy(€?) = diag€?, 1, ..., 1) € U(1), |0;) is an invariant vector with respect to the
representatiorf, , (k), k € U(q). From equation (2.19) it follows that

o o4m)/2F (0 —m)/2
oo = [ Le sl 1T (2.21)

¢
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The plane waves z[ s]¢+™/?[z,5s]°"™/% are eigenfunctions of the Laplace—Beltrami
operator on SF/. The zonal spherical function§ ., (a(a)) satisfy the equation

1 d d 2
(m @ S|n|’?q_la COSMQ + CO’Z}%Q/) tg’kmok (a) = U(U + 1)tg:lok (Ol)
(2.22)

For the Harish—-Chrandra-functions from equation (2.21) we obtain the integral
representation

27 2 ) )
Cpl) = / / (1 — €% cosh)@+™/2(1 — ¢ cosp) /2 sirt1=36 cost db dy.  (2.23)
0 0

The expression of th€,,(o)-function has the form [2]
[(—0 —¢q)

) = (o —m DT (o + /D (224)
The substitution

T, (@) = sinh 742 o cosh /2 W (o) (2.25)
reduces (2.22) to the Saidinger equation with potential

V=[(g— 1% i]sinh2a — (m?* — }) coshr?a. (2.26)

The orthogonality conditions for plane waves on BS are similar to formula (2.18) from
[1] for the plane waves on S¥ of the groupSO(1, q), but in the completeness condition
overo there is a summation over the integer

2.2. Plane waves on SS of the grauipp, g)
In the complex vector spaagé”¢ we define the bilinear product
[2.2]=z1zi+ -+ 2pZ) = Zp+iZpp1 = — Zptalpiq-

The pointz such that {, z] = 1 forms complex hyperboloid&? ¢ and H*** in CP+,
respectively. Every pointZ” "7 (or H”"7") is representable in the form

= (ei(ﬂlglv R ei(p[) g]% ei‘ﬁ,;+1§p+l’ ] ei‘ﬂerq §p+q) (227)

where 0< ¢; < 27,6, 20,i=1,...,p+¢4, ¢ = (61, ..., Sp, Sp+1, - - - » Sptg) IS the point
of the real hyperboloid.. (or z_): [¢, ¢] = +1 (or [g, ¢] = —1). The pointsy € C?-? for
which [y, y] = 0 form a complex con&. in C?4. Every pointy € Y, is representable in
the form

y = (ei“’lvl, e, ei‘”"v,,, ei“’”+1v,,+1, e, gvr+a Vptq) (2.28)

where 0< @1 < 27,11 20,i=1,...,p+qg,v=(1,...,Vp, Vpt1, ..., Vpyq) IS the
point real coneY:[v, v] = 0.

As in the case of the groufO (p, ¢) [1] we find that the zonal spherical functions of
the representatioffi, (g), g € U(p, g) in the mixed basis are given by the formula

Toy.0,(82) = /

Sf’flx

Mz, 5117 dn. (2.29)
S~

Here|0Oy) is the invariant vector with respect to the representatich), k € U (p) x U(q)
and |Oy) is the invariant vector with respect to the representalipth), h € H =~
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U(p—1,q) (or U(p, qg—1)). The pointss € H? 4 (or H’***) ands € Y. are represented
in the bispherical coordinate systems B ¢ (or H”*™) andY,:

z = (coshan”, sinhan?) or z = (sinhan”, coshan@) (2.30)
ands = (P @), p» e sP71 @ e $771, respectively. The zonal spherical functions
T§,.0.(8) =T3, .0, (8(@), z € H ™' satisfy the equation

— sinkrt Ri-1oy_— )10 ‘
(sinhz"‘la cosi Lo da o 08 “da> 040, (¢(@))
=o0(0 +2p+29—2T;,.0, (a(@)). (2.31)

As in the case of the groufO (p, ¢) for the Harish—Chandra-function we have

/2 pn/2 pm/2 )
CPi(o) = f / / | cosd — € cosw| 7~ 2P+2+2 5ir?P~3 9 cosh sintd 3
0 0 0
X @ COSw df dw dg. (2.32)
By reparametrization, this integral can be simplified [4] and we have

CPi(o) = / / | cosh — cosw| 7 2PT2+2 5in?P=2 9 sirf1 2 o df dw
0 0
_ Peo—p—q+DI(=0+3/2)—p—9q)
VAT (=o/2T((=0/2) = p+ DI (=0/2) =g + 1)
Note that this expression for thefunction can be obtained from the expression of ¢he

function of the groupS O (p, ¢) (see equation (2.63) from [1]) by the substitutipn—~ 2p,
q— 2q.

(2.33)

3. Plane waves on SS of ranlp > 1 of the group U (p, q)

From the definitonglg’ = I, ¢ € U(p,q) of the pseudo-unitary group/(p, q) it
follows that the elements of the maximal compact subgréup= U(p) x U(q) is
fixed under the involutive automorphism(g) = Igl. The symmetric Riemannian
spaceX, = U(p,q)/U(p) x U(qg) with fixed pointx = 1-unit has dimension/ =
(p + ¢)? — p?> — g% = 2pq. The centralizer subgroupl of A in K has the form

M =diag(us, ..., u,, Ulq — p), up, ..., u1),u;eU(). (3.2)
For the Cartan decompositiati = K’'AK of the groupU (p, ¢) we have

x = ka%k™? kekK, acA. (3.2)
Thea(at, ..., a?) = []/_;a(a’) are hyperbolic rotations in planes/( x7*4*1J), j =

1, ..., p. We define the con&,. with fixed point§1 (see equation (3.9) from [1]) by the
formula

y1=gY1o(g™ Y. (3.3)

The stabilizer of the fixed poirﬁl in U(p, q) coincides with the semidirect product of the
subgroupU (p — 1,q — 1) and N consists of the matrices

H 2 H 2
1_|7/+Z/27Zl»-~~1Zp717Zps~-~aZp+L]*27|y_Z/2
—21 21
—Zp— 1 Zp—
n=| _“t p—t (3.4)
Zp —p
Ip+q—2 — Zp+q-2

—|)/ +Zz/21 Tly e vvy prls va ey Zp+q72s 1+ W - Z2/
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where/ is the(p+q —2) x (p+q —2) unit matrix,z? = z2+---+z2_  —z2—-- =22, ,
andy is a real parameter.
For the lwasava decomposition we have

y1 = e kyk L y,Yev, ke U(p)U(q). (3.5)
The metric on the SX. is defined by the formula
[)Cl, X2] = %tl‘(lxllftz) X1, x2 € X,. (36)

For the metric matrix in the SX, we have
1 _
8ij = — tr(Ixq, x1) (3.7)
n J

wherex, = dx/dr;, t; are coordinates of the SS. The radial part of the Laplace—Beltrami
operator on SS is defined by the formula [5]

1 & o d
Ve 200V 5
where /g = ,/det(g;;). For /g we have

P
Vg = []sintP(e’ — o) sintt (e’ + /) sintP=") o sinh 2. (3.8)

=J
Here Cartan coordinates’ — o/, o' + o/, o, 2o’ of the groupU(p, q) correspond
to the positive restricted roots’ — w’/, o' + o/, o', 20’ of the algebra of the group
U(p, g) with multiplicity 2, 2, ¢ — p and 1, respectively. The irreducible representations
T,,(8), x1 = (01, x2), g € U(p, q), of the groupU (p, g) we construct in the spade,, of an
infinitely differentiable vector function with homogeneity degegeand with the condition
F(uy) = F(y), u € U(1), whose values belong to the spabg, of the representation
T,,(8), § € SU(p — 1,9 — 1). The representation formula can be written in the form

Ty (g) f (s1) = €4™711%2((s1, g)) f (gs10 (g~ 1)) geU(p.q) (3.9

wherey; = &'sq1, 51 = kﬁlkfl, x1 = (o1, x2), g is the element of the stability subgroup
U(p—1,9 —1); f(s) is a vector function on the intersection of the caone= kﬁﬂc*l
with values in the representation spag, of the stability subgrou@/(p — 1, ¢ — 1). The
expressions &7t and §(s,, g) are defined from the relations

Vi=gnmo@ ™ €WK gk = ng(s1, g). (3.10)
It follows that

&) = Jltr(gsio (g M. (3.11)
The unitary representatiofi, (g), gcU (p, ¢), with respect to the scalar producf;, f>) =

[(f1(s) f2(s)) ds is defined byo; = —(p + ¢) + 1+ ip1, p1 € [0, o] (principal series).
Here () denotes the inner product of vector-valued functions in the spgge

ds =dsPds@ D eUP/UP-D P elU@/Ug-D.
For the elemeng,, which is defined by = gx}?a(g;l), from (3.11) it follows that
T 2 ka2 sy = [[x. st (312)

For simplicity let us consider the case of the grduf®, 2). Concerning the physics of the
eight-dimensional SX = U(2,2)/U(2) x U(2), see the report [6] which was given by
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A O Barut in the conference on ‘Noncompact Lie Groups and some of their Applications’.
In this case the zonal spherical functions onX8S= U (2, 2)/U (2) x U (2) are defined by
the formula

o080 = (LU LY = [ Ile sl (2 b (3.13)

whereo; = —3+ip1, 0o = —1+ip2, p1, p2 € [0, 00). For the zonal spherical functio@i;ok
of the stability subgroug/ (1, 1) we have a similar integral representation (see section 3
from [1]). So we have

ték;ok (gy) = fz B /1 . I[x, 51117922 [ x1ksok Y] — [x, s1] tr(n2)| 2 dsy dso. (3.14)

The plane waves
[x, 511192272 [ x1ksok Y] — [x, s1]tr(n2)|°? (3.15)

are eigenfunctions of the Laplace—Beltrami operator onXSS= U(2,2)/U(2) x U(2).
Harish—-Chandra’s(o1, 02)-functions are represented in the foe1, 02) = c2.2¢1.1, Where
the expressions af, 2 andcy 1 are defined by formula (2.33).

Consider the quantum integrable system related t&XSSU (2, 2)/U (2) x U(2).

x = kg1, 01, Y192, 02, Y2)a? (a1, a2)k (91, 61, Y192, 6212) (3.16)
where
(a1/ — b1)(b1/a1) 0 > 0 ioru.
k= ; = cos2 @tV
( 0 (a2/ — by) (ba/az) “ 2
9 .
bj = sinée‘“ﬁf’%) ji=12
coshoq 0 0 sinhoq
( )= 0 coshy, sinhay 0
ald, a2) = 0 sinha,  coshas 0
sinhay 0 0 coshy;
Calculating the metric matrix by the formula
gij = str(Ix,Ix;) i,j=1...,8
wheret; are parameters of the S8 we have
Vg = sintf(ay + az) sintf(ay — )| sinh 2vy| | sinh 2xy|. (3.17)

The radial part of the Laplace equation has the form

201 9 3 L+D
E — g - = +6)+ +2 1
[ L Jg o, «/§800‘ Sint? 20, ]19(0[1, az) = [01(01 + 6) + 02(02 + 2)]9 (a1, a2) (3.18)

where (Il + 1) is the eigenvalue of the Laplace operator on the gr6if2). By the
substitution

D (a1, az) = sinh Y (aq + a2) sinh (a1 — a)w (a1, @) (3.19)
we get
1& 92 1 a L+
Iy 00 L oothay L AU ED Y
|:4 ]:Zl da? T2 "9a;  sinlf 20; wles, a2)
1
= —[o1(01 + 6) + 02(02 + 2) + 8w (a1, @2). (3.20)

4
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The separation in the variableg andw; of the solutionsv (1, «2) of the equation is evident
and we give rise to the eigenvalue problems of the radial part of the Laplace operator on
a two-dimensional two-sheeted hyperboloid [7] on each variable 207 and o = 2as5.
Finally, the substitution

w(og, o) = sinh /2 2001 sinh /2 2001 (a1, 0r2) (3.21)

reduces equations (3.20) to the two-particle one-dimensionald8iciger equation with
potentials

L +1
V(rm)—Z“( -

= sinh 2
E = —3}01(01+6) — az(az +2) - ¥ =Gip)* + ip2)? (3.22)
wheret; = 2, oy = =3+ 1ip1, 02 = =14 1ip>. The w-function is represented in the form
4
\IJ(T].’ T2) - p pz [\Ijﬂl (Tl)\ljpz (T2) pl(TZ)lepz(rl)] (323)
1 2

with
TG +n+ip;/2)
(S +ip;/2T(n; + 1)
xF(+Lip;, 3= Lipj,n+ 1 —sinffoy) (3.24)
where,/E; = p; andn; = 3 /I;(; + 1), j = 1, 2.

These solutions and the general one’s related taXSS U (p, q)/U(p) x U(q) were
found by Berezin and Karplevich [8].

W (20;, pj/2) = (si ha,)z+”(cosha yen
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