Plane waves, integrable quantum systems and the group $\boldsymbol{U}(\boldsymbol{p}, \boldsymbol{q}), \boldsymbol{p} \leqslant \boldsymbol{q}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 304109
(http://iopscience.iop.org/0305-4470/30/11/034)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.72
The article was downloaded on 02/06/2010 at 04:23

Please note that terms and conditions apply.

Plane waves, integrable quantum systems and the group
 $U(p, q), p \leqslant q$

Yi A Verdiyev \dagger
Trakya University Faculty of Arts and Sciences Department of Mathematics Edirne, Turkey International Center for Physics and Applied Mathematics, Edirne, Turkey

Received 5 November 1996

Abstract. Plane waves on symmetric spaces (SS) $X_{c} \equiv S U(p, q) / S(U(p) \otimes U(q)), p \leqslant$ $q=2,3, \ldots$, are constructed. The integrable n-body quantum systems related to $\mathrm{SS} X$ are considered.

1. Introduction

This paper is a continuation of the paper concerning the plane waves and integrable quantum systems of the group $S O(p, q)$ [1]. Hence, we refer to this reference for details. Here we have considered the spaces related with Cartan involutive automorphism of the group $U(p, q), p \leqslant q=2,3, \ldots$, namely the symmetric Riemannian and pseudo-Riemannian spaces with rank equal to $p=1,2, \ldots$

$$
X_{c} \equiv S U(p, q) / S(U(p) \otimes U(q)) \quad Z_{c} \equiv U(p, q) / U(1) \otimes U(p-1, q)
$$

We construct the plane waves on $\mathrm{SS} X_{c}$ and Z_{c} and calculate Harish-Chandra's c functions. Here we give an example of the integrable quantum system related to SS , $S U(2,2) / S(U(2) \otimes U(2))$.

The paper is organized as follows. In section 2 for completeness and to fix the notation we construct the plane waves on SS with rank 1 and give the expression for the HarishChandra c-functions. In section 3 the main result on construction of the plane waves on SS with rank $p>1$ and consideration of integrable quantum systems related to SS $S U(2,2) / S(U(2) \otimes U(2))$ are presented.

2. Plane waves on SS of $\operatorname{rank} 1$ of the group $U(p, q), p \leqslant q$

In this section we construct plane waves on SS defined by quadratic forms in the space $C^{p, q}$.

2.1. Plane waves on $S S$ of the group $U(1, q)$

We use the notation $z=\left(z_{0}, z_{1}, \ldots, z_{q}\right)$ for the elements of an $(n=1+q)$-dimensional complex vector space $C^{1, q}$. In $C^{1, q}$ we define the bilinear product $\left[z, z^{\prime}\right]=z_{0} \bar{z}_{0}^{\prime}-z_{1} \bar{z}_{1}^{\prime}-$

[^0]$\cdots-z_{q} \bar{z}_{q}^{\prime}$. Points z such that $[z, z]=1$ form a complex hyperboloid H_{c}^{q} in $C^{1, q}$. The stabilizer of $\stackrel{\circ}{z}=(1,0, \ldots, 0) \in H_{c}^{q}$ coincides with the subgroup $U(q)$. Therefore,
\[

$$
\begin{equation*}
H_{c}^{q} \approx U(1, q) / U(q) \tag{2.1}
\end{equation*}
$$

\]

Every point $z \in H_{c}^{q}$ is representable in the form

$$
\begin{align*}
& z=\left(\mathrm{e}^{\mathrm{i} \varphi_{0}} \varsigma_{0}, \mathrm{e}^{\mathrm{i} \varphi_{1}} \varsigma_{1}, \ldots, \mathrm{e}^{\mathrm{i} \varphi_{q}} \varsigma_{q}\right) \quad \text { where } 0 \leqslant \varphi_{i}<2 \pi, \varsigma_{i} \geqslant 0 \\
& i=0,1,2, \ldots, q, \varsigma=\left(\varsigma_{1}, \ldots, \varsigma_{q}\right) \tag{2.2}
\end{align*}
$$

is the point of the real hyperboloid $[\varsigma, \varsigma]=\varsigma_{0}^{2}-\cdots-\varsigma_{q}^{2}=1$. From $\cosh k r=\operatorname{Re}[z, \stackrel{\circ}{z}]=$ $\cos \varphi_{0} \zeta_{0}$ it follows that the distance has real and imaginary parts. Hence the space H_{c}^{q} is a symmetric pseudo-Riemannian space. This fact can be seen by identifying the space $C^{1, q}$ with the pseudo-Euclidean space $R^{2,2 q}$. Then we have

$$
\begin{equation*}
U(1, q) / U(q) \approx S O(2,2 q) / S O(1,2 q) \tag{2.3}
\end{equation*}
$$

By identifying the points $\mathrm{e}^{\mathrm{i} \varphi} z, 0 \leqslant \varphi<2 \pi$, of H_{c}^{q} we have obtained a symmetric Riemannian space:

$$
\begin{equation*}
X_{c} \approx U(1, q) / U(1) \times U(q) \approx S U(1, q) / S(U(1) \times U(q)) \tag{2.4}
\end{equation*}
$$

Indeed, the transitive motion group of X coincides with $S U(1, q)$. The subgroup $S(U(1) \times U(q))$ is the stabilizer of the point $\stackrel{\circ}{x}=\left(\mathrm{e}^{\mathrm{i} \varphi}, 0, \ldots, 0\right) \in X_{c}$. Every point $x \in X_{c}$ is representable of the form

$$
\begin{equation*}
x=\left(\varsigma_{0}, \mathrm{e}^{\mathrm{i} \varphi_{1}} \varsigma_{1}, \ldots, \mathrm{e}^{\mathrm{i} \varphi_{q}} \zeta_{q}\right) . \tag{2.5}
\end{equation*}
$$

The distance between points $\dot{x}=(1,0, \ldots, 0)$ and x defined by the formula

$$
\begin{equation*}
\cosh k r=\operatorname{Re}[\stackrel{\circ}{x}, x]=\varsigma_{0} \geqslant 1 \tag{2.6}
\end{equation*}
$$

Points $y \in C^{1, q}$ for which $[y, y]=0$, form the complex cone Y_{c} in $C^{1, q}$. Every point $y \in C^{1, q}$ is representable in the form
$y=\left(\mathrm{e}^{\mathrm{i} \varphi_{0}} \nu_{0}, \mathrm{e}^{\mathrm{i} \varphi_{1}} \nu_{1}, \ldots, \mathrm{e}^{\mathrm{i} \varphi_{q}} \nu_{q}\right) \quad$ where $0 \leqslant \varphi_{i} \leqslant 2 \pi, \nu_{i} \geqslant 0, i=0,1, \ldots, q$.
$v=\left(v_{0}, v_{1}, \ldots, v_{q}\right)$ is the point real cone $Y:[v, \nu]=0$.
The maximal degenerate representation of the group $U(1, q)$ can be constructed in the space D_{σ} of infinitely differentiable homogeneity functions $F(y)$ with homogeneously degree σ on a cone Y_{c} [2]:

$$
\begin{equation*}
F(a y)=a^{\sigma} F(y) \quad a>0 \quad y \in Y_{c} \tag{2.8}
\end{equation*}
$$

and with condition $F(u y)=F(y),|u|=1$. The representation

$$
\begin{equation*}
T_{\sigma}(g) F(y)=F(y g) \quad g \in S U(1, q) \tag{2.9}
\end{equation*}
$$

can be realized in the space of infinitely differentiable functions on intersections of the cone, for example on the complex sphere $S_{c}^{q-1}=S U(q) / S U(q-1)$:

$$
\begin{equation*}
T_{\sigma}(g) f(s)=|(s g)|^{\sigma} f(\overline{g g}) \quad g \in S U(1, q) \tag{2.10}
\end{equation*}
$$

where $s=\left.y\right|_{y_{0}=1}=(1, \eta), y=\mathrm{e}^{\alpha} \mathrm{e}^{\mathrm{i} \varphi_{0}} s, \eta \in S_{c}^{q-1}, \overline{s g}=s g /(s g)_{0}$.
From $y^{\prime}=y g$ we have

$$
\begin{equation*}
\left|(s g)_{0}\right|=\mathrm{e}^{\alpha^{\prime}-\alpha} \overline{s g}=\left(1, \eta_{g}\right) \tag{2.11}
\end{equation*}
$$

The representation $T_{\sigma}(g), g \in S U(1, q)$, is a unitary representation with respect to the scalar product

$$
\begin{equation*}
\left\langle f_{1}, f_{2}\right\rangle=\int f_{1}(\eta) \overline{f_{2}(\eta)} \mathrm{d} \eta \tag{2.12}
\end{equation*}
$$

where $\mathrm{d} \eta$ is an invariant volume on S_{c}, if $\sigma=-q+\mathrm{i} \rho, \rho \in[0, \infty)$ (the principal series). Indeed from the relations

$$
y^{\prime}=y g \Rightarrow y_{0}^{\prime}=y_{0}(s g)_{0} \Rightarrow \mathrm{e}^{\alpha^{\prime}} \mathrm{e}^{\mathrm{i} \varphi_{0}^{\prime}}=\mathrm{e}^{\alpha} \mathrm{e}^{\mathrm{i} \varphi_{0}}(s g)_{0}
$$

and from the invariant of the volume element on Y_{c}, $\mathrm{d} y=\mathrm{d} y^{\prime}$, where $\mathrm{d} y=\mathrm{e}^{2 q \alpha} \mathrm{~d} \alpha \mathrm{~d} \varphi_{0} \mathrm{~d} \eta$, we have

$$
\begin{equation*}
\mathrm{d} \eta=\left|(s g)_{0}\right|^{2 q} \mathrm{~d} \eta^{\prime} \tag{2.13}
\end{equation*}
$$

It follows that the invariant condition of the scalar product $\left\langle f_{1}, f_{2}\right\rangle$ under the representation equation (2.10) is $\sigma+\bar{\sigma}+2 q=0$. The representations $T_{\sigma}(g)$ and $D_{-2 q-\sigma}(g), g \in S U(1, q)$ are equivalent.

As in the case of the group $\operatorname{SO}(1, q)$ [1] we find that the zonal spherical functions of the representation $T_{\sigma}(g), g \in S U(1, q)$ are given by the formula

$$
\begin{equation*}
T_{O_{k} ; O_{k}}^{\sigma}\left(g_{x}\right)=\int_{S_{0}^{q-1}}|[x, s]|^{\sigma} \mathrm{d} \eta \quad x \in X_{c} \tag{2.14}
\end{equation*}
$$

Here $\left|O_{k}\right\rangle$ is the invariant vector with respect to the representation

$$
T_{\sigma}(k), k \in U(1) \times U(q)
$$

The plane waves $|[x, s]|^{\sigma}$ are the eigenfunctions of the Laplace-Beltrami operator on the SS X_{c} :

$$
\begin{equation*}
\Delta_{L, B}|[x, s]|^{\sigma}=-\sigma(\sigma+2 q)|[x, s]|^{\sigma} . \tag{2.15}
\end{equation*}
$$

The zonal spherical functions $T_{O_{k} ; O_{k}}^{\sigma}(a(\alpha))$ satisfy the equation

$$
\begin{equation*}
\left(\frac{1}{\sinh ^{2 q} \alpha} \frac{\mathrm{~d}}{\mathrm{~d} \alpha} \sinh ^{2 q} \alpha \frac{\mathrm{~d}}{\mathrm{~d} \alpha}\right) t_{O_{k} ; O_{k}}^{\sigma}(a(\alpha))=\sigma(\sigma+2 q) t_{O_{k} ; O_{k}}^{\sigma}(a(\alpha)) \tag{2.16}
\end{equation*}
$$

for the Harish-Chandra c-function from (2.14) we have the integral representation

$$
\begin{equation*}
C(\sigma)=\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|1-\mathrm{e}^{\mathrm{i} \varphi} \cos \theta\right|^{\sigma} \sin ^{2 q-3} \cos \theta \mathrm{~d} \theta \mathrm{~d} \varphi \tag{2.17}
\end{equation*}
$$

Calculation of this integral was done by Helgason [3]:

$$
\begin{equation*}
C(\sigma)=\frac{\Gamma(-\sigma-q)}{[\Gamma(-\sigma / 2)]^{2}} \tag{2.18}
\end{equation*}
$$

The orthogonality and completeness conditions for the plane waves on SS X_{c} of the group $U(1,2)$ are similar to those of the plane waves on $\mathrm{SS} X$ of the group $S O(1, q)$.

To construct the plane waves on $\mathrm{SS} H_{c}^{q}$ we consider the representation $T_{\sigma, m}(g)$, $g \in U(1, q)$ in the space $D_{\sigma, m}$ of the functions $F(y), y \in Y_{c}$ with the condition [2]

$$
\begin{equation*}
F(u y)=u^{m} F(y) \quad|u|=1 \tag{2.19}
\end{equation*}
$$

where m is an integer. The zonal spherical function of the representation $T_{\sigma, m}(g)$, $g \in U(1, q)$, has the form

$$
\begin{equation*}
t_{O_{k} ; O_{k}}^{\sigma, m}\left(d_{0}\left(\mathrm{e}^{\mathrm{i} \varphi}\right) a(\alpha)\right)=\mathrm{e}^{-\mathrm{i} m \varphi} t_{O_{k} ; O_{k}}^{\sigma, m}(a(\alpha)) \tag{2.20}
\end{equation*}
$$

where $d_{0}\left(\mathrm{e}^{\mathrm{i} \varphi}\right)=\operatorname{diag}\left(\mathrm{e}^{\mathrm{i} \varphi}, 1, \ldots, 1\right) \in U(1),\left|O_{k}\right\rangle$ is an invariant vector with respect to the representation $T_{\sigma, m}(k), k \in U(q)$. From equation (2.19) it follows that

$$
\begin{equation*}
t_{O_{k} ; O_{k}}^{\sigma, k}\left(g_{z}\right)=\int_{S_{c}^{q-1}}[z, s]^{(\sigma+m) / 2} \overline{[z, s]}^{(\sigma-m) / 2} \mathrm{~d} \eta \tag{2.21}
\end{equation*}
$$

The plane waves $[z, s]^{(\sigma+m) / 2}[z, s]{ }^{(\sigma-m) / 2}$ are eigenfunctions of the Laplace-Beltrami operator on SS H_{c}^{q}. The zonal spherical functions $t_{O_{k} ; O_{k}}^{\sigma}(a(\alpha))$ satisfy the equation
$\left(\frac{1}{\sinh ^{2 q-1} \alpha \cosh \alpha} \frac{\mathrm{~d}}{\mathrm{~d} \alpha} \sinh ^{2 q-1} \alpha \cosh \alpha \frac{\mathrm{~d}}{\mathrm{~d} \alpha}+\frac{m^{2}}{\cosh ^{2} \alpha}\right) t_{O_{k} O_{k}}^{\sigma, m}(\alpha)=\sigma(\sigma+1) t_{O_{k} ; O_{k}}^{\sigma, m}(\alpha)$.
For the Harish-Chrandra c-functions from equation (2.21) we obtain the integral representation
$C_{m}(\alpha)=\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(1-\mathrm{e}^{\mathrm{i} \varphi} \cos \theta\right)^{(\sigma+m) / 2}\left(1-\mathrm{e}^{\mathrm{i} \varphi} \cos \theta\right)^{(\sigma-m) / 2} \sin ^{2 q-3} \theta \cos \theta \mathrm{~d} \theta \mathrm{~d} \varphi$.
The expression of the $C_{m}(\sigma)$-function has the form [2]

$$
\begin{equation*}
C_{m}(\sigma)=\frac{\Gamma(-\sigma-q)}{\Gamma((-\sigma-m) / 2) \Gamma((-\sigma+m) / 2)} . \tag{2.24}
\end{equation*}
$$

The substitution

$$
\begin{equation*}
T_{O_{k} ; O_{k}}^{\sigma, m}(\alpha)=\sinh ^{-q+1 / 2} \alpha \cosh ^{-1 / 2} \alpha \Psi(\alpha) \tag{2.25}
\end{equation*}
$$

reduces (2.22) to the Schrödinger equation with potential

$$
\begin{equation*}
V=\left[(q-1)^{2}-\frac{1}{4}\right] \sinh ^{-2} \alpha-\left(m^{2}-\frac{1}{4}\right) \cosh ^{-2} \alpha . \tag{2.26}
\end{equation*}
$$

The orthogonality conditions for plane waves on SS H_{c}^{q} are similar to formula (2.18) from [1] for the plane waves on $\mathrm{SS} X$ of the group $S O(1, q)$, but in the completeness condition over σ there is a summation over the integer m.

2.2. Plane waves on $S S$ of the group $U(p, q)$

In the complex vector space $C^{p, q}$ we define the bilinear product

$$
\left[z, z^{\prime}\right]=z_{1} \overline{z_{1}^{\prime}}+\cdots+z_{p} \overline{z_{p}^{\prime}}-z_{p+1} \overline{z_{p+1}^{\prime}}-\cdots-z_{p+q} \overline{z_{p+q}^{\prime}} .
$$

The point z such that $[z, z]= \pm 1$ forms complex hyperboloids $H_{c}^{p-1, q}$ and $H_{c}^{p, q-1}$ in $C^{p, q}$, respectively. Every point $H_{c}^{p-1, q}$ (or $H_{c}^{p, q-1}$) is representable in the form

$$
\begin{equation*}
z=\left(\mathrm{e}^{\mathrm{i} \varphi_{1}} \varsigma_{1}, \ldots, \mathrm{e}^{\mathrm{i} \varphi_{p}} S_{p}, \mathrm{e}^{\mathrm{i} \varphi_{p+1}} S_{p+1}, \ldots, \mathrm{e}^{\mathrm{i} \varphi_{p+q}} S_{p+q}\right) \tag{2.27}
\end{equation*}
$$

where $0 \leqslant \varphi_{i} \leqslant 2 \pi, \varsigma_{i} \geqslant 0, i=1, \ldots, p+q, \varsigma=\left(\varsigma_{1}, \ldots, \varsigma_{p}, \varsigma_{p+1}, \ldots, \varsigma_{p+q}\right)$ is the point of the real hyperboloid z_{+}(or z_{-}): $[\varsigma, \varsigma]=+1$ (or $[\varsigma, \varsigma]=-1$). The points $y \in C^{p, q}$ for which $[y, y]=0$ form a complex cone Y_{c} in $C^{p, q}$. Every point $y \in Y_{c}$ is representable in the form

$$
\begin{equation*}
y=\left(\mathrm{e}^{\mathrm{i} \varphi_{1}} v_{1}, \ldots, \mathrm{e}^{\mathrm{i} \varphi_{p}} v_{p}, \mathrm{e}^{\mathrm{i} \varphi_{p+1}} v_{p+1}, \ldots, \mathrm{e}^{\mathrm{i} \varphi_{p+q}} v_{p+q}\right) \tag{2.28}
\end{equation*}
$$

where $0 \leqslant \varphi_{1} \leqslant 2 \pi, \nu_{1} \geqslant 0, i=1, \ldots, p+q, \nu=\left(\nu_{1}, \ldots, v_{p}, v_{p+1}, \ldots, v_{p+q}\right)$ is the point real cone $Y:[\nu, \nu]=0$.

As in the case of the group $S O(p, q)$ [1] we find that the zonal spherical functions of the representation $T_{\sigma}(g), g \in U(p, q)$ in the mixed basis are given by the formula

$$
\begin{equation*}
T_{O_{H} ; O_{K}}\left(g_{z}\right)=\int_{S_{c}^{p-1} \times S_{c}^{g-1}}|[z, s]|^{\sigma} \mathrm{d} \eta . \tag{2.29}
\end{equation*}
$$

Here $\left|O_{k}\right\rangle$ is the invariant vector with respect to the representation $t_{\sigma}(k), k \in U(p) \times U(q)$ and $\left|O_{H}\right\rangle$ is the invariant vector with respect to the representation $T_{\sigma}(h), h \in H \approx$
$U(p-1, q)$ (or $U(p, q-1)$). The points $z \in H_{c}^{p-1, q}$ (or $H_{c}^{p, q-1}$) and $s \in Y_{c}$ are represented in the bispherical coordinate systems on $H_{c}^{p-1, q}\left(\right.$ or $\left.H_{c}^{p, q-1}\right)$ and Y_{c} :

$$
\begin{equation*}
z=\left(\cosh \alpha \eta^{(p)}, \sinh \alpha \eta^{(q)}\right) \quad \text { or } \quad z=\left(\sinh \alpha \eta^{(p)}, \cosh \alpha \eta^{(q)}\right) \tag{2.30}
\end{equation*}
$$

and $s=\left(\eta^{(p)} \eta^{(q)}\right), \eta^{(p)} \in S_{c}^{p-1}, \eta^{(q)} \in S_{c}^{q-1}$, respectively. The zonal spherical functions $T_{O_{H} ; O_{K}}^{\sigma}\left(g_{z}\right)=T_{O_{H} ; O_{K}}^{\sigma}(g(\alpha)), z \in H_{c}^{p-1, q}$ satisfy the equation

$$
\begin{gather*}
\left(\frac{1}{\sinh ^{2 p-1} \alpha \cosh ^{2 q-1} \alpha} \frac{\mathrm{~d}}{\mathrm{~d} \alpha} \sinh ^{2 p-1} \alpha \cosh ^{2 q-1} \alpha \frac{\mathrm{~d}}{\mathrm{~d} \alpha}\right) T_{O_{H} ; O_{K}}^{\sigma}(a(\alpha)) \\
=\sigma(\sigma+2 p+2 q-2) T_{O_{H} ; O_{K}}^{\sigma}(a(\alpha)) \tag{2.31}
\end{gather*}
$$

As in the case of the group $S O(p, q)$ for the Harish-Chandra c-function we have

$$
\begin{gather*}
C^{p, q}(\sigma)=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2}\left|\cos \theta-\mathrm{e}^{\mathrm{i} \varphi} \cos \omega\right|^{-\sigma-2 p+2 q+2} \sin ^{2 p-3} \theta \cos \theta \sin ^{2 q-3} \tag{2.32}\\
\times \omega \cos \omega \mathrm{d} \theta \mathrm{~d} \omega \mathrm{~d} \varphi
\end{gather*}
$$

By reparametrization, this integral can be simplified [4] and we have

$$
\begin{align*}
C^{p, q}(\sigma)= & \int_{0}^{\pi} \int_{0}^{\pi}|\cos \theta-\cos \omega|^{-\sigma-2 p+2 q+2} \sin ^{2 p-2} \theta \sin ^{2 q-2} \omega \mathrm{~d} \theta \mathrm{~d} \omega \\
& =\frac{\Gamma(-\sigma-p-q+1) \Gamma((-\sigma+3 / 2)-p-q)}{\sqrt{\pi} \Gamma(-\sigma / 2) \Gamma((-\sigma / 2)-p+1) \Gamma((-\sigma / 2)-q+1)} \tag{2.33}
\end{align*}
$$

Note that this expression for the c-function can be obtained from the expression of the c function of the group $S O(p, q)$ (see equation (2.63) from [1]) by the substitution $p \rightarrow 2 p$, $q \rightarrow 2 q$.

3. Plane waves on SS of $\operatorname{rank} p>1$ of the $\operatorname{group} U(p, q)$

From the definition $g I \bar{g}^{t}=I, g \in U(p, q)$ of the pseudo-unitary group $U(p, q)$ it follows that the elements of the maximal compact subgroup $K=U(p) \times U(q)$ is fixed under the involutive automorphism $\sigma(g)=I g I$. The symmetric Riemannian space $X_{c}=U(p, q) / U(p) \times U(q)$ with fixed point $\stackrel{\circ}{x}=1$-unit has dimension $d=$ $(p+q)^{2}-p^{2}-q^{2}=2 p q$. The centralizer subgroup M of A in K has the form

$$
\begin{equation*}
M=\operatorname{diag}\left(u_{1}, \ldots, u_{p}, U(q-p), u_{p}, \ldots, u_{1}\right), u_{i} \varepsilon U(1) \tag{3.1}
\end{equation*}
$$

For the Cartan decomposition $G=K^{\prime} A K$ of the group $U(p, q)$ we have

$$
\begin{equation*}
x=k a^{2} k^{-1} \quad k \in K, a \in A \tag{3.2}
\end{equation*}
$$

The $a\left(\alpha^{1}, \ldots, \alpha^{p}\right)=\prod_{j=1}^{p} a\left(\alpha^{j}\right)$ are hyperbolic rotations in planes $\left(x^{j}, x^{p+q+1-j}\right), j=$ $1, \ldots, p$. We define the cone Y_{c} with fixed point $\stackrel{\circ}{y}_{1}$ (see equation (3.9) from [1]) by the formula

$$
\begin{equation*}
y_{1}=g \stackrel{\circ}{y}_{1} \sigma\left(g^{-1}\right) \tag{3.3}
\end{equation*}
$$

The stabilizer of the fixed point $\dot{\circ}_{1}$ in $U(p, q)$ coincides with the semidirect product of the subgroup $U(p-1, q-1)$ and N consists of the matrices

$$
n=\left(\begin{array}{lc}
1-\mathrm{i} \gamma+z^{2} / 2, z_{1}, \ldots, z_{p-1}, z_{p}, \ldots, z_{p+q-2}, \mathrm{i} \gamma-z^{2} / 2 \tag{3.4}\\
-z_{1} & I \\
-z_{p-1} & z_{1} \\
z_{p-1} & -z_{p} \\
z_{p+q-2} & -z_{p+q-2} \\
-\mathrm{i} \gamma+z^{2} / 2, z_{1}, \ldots, z_{p-1}, z_{p}, \ldots, z_{p+q-2}, 1+\mathrm{i} \gamma-z^{2} / 2
\end{array}\right)
$$

where I is the $(p+q-2) \times(p+q-2)$ unit matrix, $z^{2}=z_{1}^{2}+\cdots+z_{p-1}^{2}-z_{p}^{2}-\cdots-z_{p+q-2}^{2}$ and γ is a real parameter.

For the Iwasava decomposition we have

$$
\begin{equation*}
y_{1}=\mathrm{e}^{2 \alpha^{1}} k \stackrel{\circ}{y}_{1} k^{-1} \quad y, \stackrel{\circ}{y} \in Y_{c} \quad k \in U(p) U(q) \tag{3.5}
\end{equation*}
$$

The metric on the $\operatorname{SS} X_{c}$ is defined by the formula

$$
\begin{equation*}
\left[x_{1}, x_{2}\right]=\frac{1}{2} \operatorname{tr}\left(I x_{1} I \bar{x}_{2}^{t}\right) \quad x_{1}, x_{2} \in X_{c} \tag{3.6}
\end{equation*}
$$

For the metric matrix in the $\mathrm{SS} X_{c}$ we have

$$
\begin{equation*}
g_{i j}=\frac{1}{n} \operatorname{tr}\left(I \dot{x}_{\tau_{i}}, \overline{\dot{x}_{\tau_{j}}^{t}}\right) \tag{3.7}
\end{equation*}
$$

where $\dot{x}_{\tau_{i}}=\mathrm{d} x / \mathrm{d} \tau_{i}, \tau_{i}$ are coordinates of the SS . The radial part of the Laplace-Beltrami operator on SS is defined by the formula [5]

$$
\frac{1}{\sqrt{g}} \sum_{j=1}^{p} \frac{\partial}{\partial x^{j}} \sqrt{q} \frac{\partial}{\partial x^{j}}
$$

where $\sqrt{g}=\sqrt{\operatorname{det}\left(g_{i j}\right)}$. For \sqrt{g} we have

$$
\begin{equation*}
\sqrt{g}=\prod_{i=j}^{p} \sinh ^{2}\left(\alpha^{i}-\alpha^{j}\right) \sinh ^{2}\left(\alpha^{i}+\alpha^{j}\right) \sinh ^{2(q-p)} \alpha^{i} \sinh 2 \alpha^{i} \tag{3.8}
\end{equation*}
$$

Here Cartan coordinates $\alpha^{i}-\alpha^{j}, \alpha^{i}+\alpha^{j}, \alpha^{i}, 2 \alpha^{i}$ of the group $U(p, q)$ correspond to the positive restricted roots $\omega^{i}-\omega^{j}, \omega^{i}+\omega^{j}, \omega^{i}, 2 \omega^{i}$ of the algebra of the group $U(p, q)$ with multiplicity $2,2, q-p$ and 1 , respectively. The irreducible representations $T_{\chi_{1}}(g), \chi_{1}=\left(\sigma_{1}, \chi_{2}\right), g \in U(p, q)$, of the group $U(p, q)$ we construct in the space $D_{\chi_{1}}$ of an infinitely differentiable vector function with homogeneity degree σ_{1} and with the condition $F(u y)=F(y), u \in U(1)$, whose values belong to the space $D_{\chi_{2}}$ of the representation $T_{\chi_{2}}(\tilde{g}), \tilde{g} \in S U(p-1, q-1)$. The representation formula can be written in the form

$$
\begin{equation*}
T_{\chi}(g) f\left(s_{1}\right)=\mathrm{e}^{\left(\alpha_{g}^{\prime}-\alpha^{\prime}\right) \sigma_{1}} t^{\chi_{2}}\left(\tilde{g}\left(s_{1}, g\right)\right) f\left(\overline{g s_{1} \sigma\left(g^{-1}\right)}\right) \quad g \in U(p, q) \tag{3.9}
\end{equation*}
$$

where $y_{1}=\mathrm{e}^{\alpha^{\prime}} s_{1}, s_{1}=k \dot{y}_{1} k^{-1}, \chi_{1}=\left(\sigma_{1}, \chi_{2}\right), \tilde{g}$ is the element of the stability subgroup $U(p-1, q-1) ; f(s)$ is a vector function on the intersection of the cone $s_{1}=k \grave{y}_{1} k^{-1}$ with values in the representation space $D_{\chi_{2}}$ of the stability subgroup $U(p-1, q-1)$. The expressions $\mathrm{e}^{\left(\alpha_{g}^{\prime}-\alpha^{\prime}\right) \sigma_{1}}$ and $\tilde{g}\left(s_{1}, g\right)$ are defined from the relations

$$
\begin{equation*}
y_{1}^{\prime}=g y_{1} \sigma\left(g^{-1}\right) \quad \mathrm{e}^{\left(\alpha_{g}^{1}-\alpha^{1}\right)} k^{\prime-1} g k=n \tilde{g}\left(s_{1}, g\right) \tag{3.10}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left.\mathrm{e}^{2\left(\alpha_{g}^{\prime}-\alpha^{\prime}\right)}=\frac{1}{2} \right\rvert\, \operatorname{tr}\left(g s_{1} \sigma\left(g^{-1}\right) \mid .\right. \tag{3.11}
\end{equation*}
$$

The unitary representation $T_{\chi_{1}}(g), g \in U(p, q)$, with respect to the scalar product $\left(f_{1}, f_{2}\right)=$ $\int\left\langle\overline{f_{1}(s)} f_{2}(s)\right\rangle \mathrm{d} s$ is defined by $\sigma_{1}=-(p+q)+1+\mathrm{i} \rho_{1}, \rho_{1} \in[0, \infty]$ (principal series). Here $\left\rangle\right.$ denotes the inner product of vector-valued functions in the space $D_{\chi_{2}}$

$$
\mathrm{d} s=\mathrm{d} \varsigma^{(p)} \mathrm{d} \xi^{(q)} \quad \xi^{(q)} \in U(p) / U(p-1) \quad \varsigma^{(p)} \in U(q) / U(q-1)
$$

For the element g_{x}, which is defined by $x=g_{x} \dot{\circ} \sigma\left(g_{x}^{-1}\right)$, from (3.11) it follows that

$$
\begin{equation*}
\mathrm{e}^{2\left(\alpha_{g_{x}^{\prime}}^{\left.\prime-\alpha^{\prime}\right)}\right.}=\frac{1}{2}\left|\operatorname{tr}\left(I k_{x} a_{x}^{2} k_{x}^{-1} I s_{1}\right)\right|=\left|\left[x, s_{1}\right]\right| \tag{3.12}
\end{equation*}
$$

For simplicity let us consider the case of the group $U(2,2)$. Concerning the physics of the eight-dimensional SS $X=U(2,2) / U(2) \times U(2)$, see the report [6] which was given by

A O Barut in the conference on 'Noncompact Lie Groups and some of their Applications'. In this case the zonal spherical functions on $\mathrm{SS} X_{c}=U(2,2) / U(2) \times U(2)$ are defined by the formula

$$
\begin{equation*}
t_{O_{k} ; O_{k}}^{\chi}\left(I g_{\chi}\right)=\left\langle T_{\chi}\left(I g_{x}^{-1}\right) 1,1\right\rangle=\int\left|\left[x, s_{1}\right]\right|^{\sigma_{1} / 2} t_{O_{k} ; O_{k}}^{\sigma_{2}}\left(\bar{g}_{x}\right) \mathrm{d} s_{1} \tag{3.13}
\end{equation*}
$$

where $\sigma_{1}=-3+\mathrm{i} \rho_{1}, \sigma_{2}=-1+\mathrm{i} \rho_{2}, \rho_{1}, \rho_{2} \in[0, \infty)$. For the zonal spherical function $t_{O_{k} ; O_{k}}^{\sigma_{2}}$ of the stability subgroup $U(1,1)$ we have a similar integral representation (see section 3 from [1]). So we have
$t_{O_{k} ; O_{k}}^{\chi}\left(g_{\chi}\right)=\int_{s_{c}^{2} \times s_{c}^{2}} \int_{s_{c}^{1} \times s_{c}^{1}}\left|\left[x, s_{1}\right]\right|^{\left(\sigma_{1}-\sigma_{2}\right) / 2}\left|\left[x_{1} k s_{2} k^{-1}\right]-\left[x, s_{1}\right] \operatorname{tr}\left(n_{2}\right)\right|^{\sigma_{2}} \mathrm{~d} s_{1} \mathrm{~d} s_{2}$.
The plane waves

$$
\begin{equation*}
\left|\left[x, s_{1}\right]\right|^{\left(\sigma_{1}-\sigma_{2}\right) / 2}\left|\left[x_{1} k s_{2} k^{-1}\right]-\left[x, s_{1}\right] \operatorname{tr}\left(n_{2}\right)\right|^{\sigma_{2}} \tag{3.15}
\end{equation*}
$$

are eigenfunctions of the Laplace-Beltrami operator on $\mathrm{SS} X_{c}=U(2,2) / U(2) \times U(2)$. Harish-Chandra's $c\left(\sigma_{1}, \sigma_{2}\right)$-functions are represented in the form $c\left(\sigma_{1}, \sigma_{2}\right)=c_{2,2} c_{1,1}$, where the expressions of $c_{2,2}$ and $c_{1,1}$ are defined by formula (2.33).

Consider the quantum integrable system related to $\mathrm{SS} X=U(2,2) / U(2) \times U(2)$.
$x=k\left(\varphi_{1}, \theta_{1}, \psi_{1} \varphi_{2}, \theta_{2}, \psi_{2}\right) a^{2}\left(\alpha_{1}, \alpha_{2}\right) k^{-1}\left(\varphi_{1}, \theta_{1}, \psi_{1} \varphi_{2}, \theta_{2} \psi_{2}\right)$
where
$k=\left(\begin{array}{cc}\left(a_{1} /-b_{1}\right)\left(b_{1} / a_{1}\right) & 0 \\ 0 & \left(a_{2} /-b_{2}\right)\left(b_{2} / a_{2}\right)\end{array}\right) \quad a_{j}=\cos \frac{\theta_{j}}{2} \mathrm{e}^{\mathrm{i}\left(\varphi_{j}+\psi_{j}\right)}$

$$
b_{j}=\sin \frac{\theta_{j}}{2} \mathrm{e}^{\mathrm{i}\left(\varphi_{j}-\psi_{j}\right)} \quad j=1,2
$$

$a\left(\alpha_{1}, \alpha_{2}\right)=\left(\begin{array}{cccc}\cosh \alpha_{1} & 0 & 0 & \sinh \alpha_{1} \\ 0 & \cosh \alpha_{2} & \sinh \alpha_{2} & 0 \\ 0 & \sinh \alpha_{2} & \cosh \alpha_{2} & 0 \\ \sinh \alpha_{1} & 0 & 0 & \cosh \alpha_{1}\end{array}\right)$.
Calculating the metric matrix by the formula

$$
g_{i j}=\frac{1}{2} \operatorname{tr}\left(I x_{t_{i}} I x_{t_{j}}\right) \quad i, j=1, \ldots, 8
$$

where t_{i} are parameters of the SS X, we have

$$
\begin{equation*}
\sqrt{g}=\sinh ^{2}\left(\alpha_{1}+\alpha_{2}\right) \sinh ^{2}\left(\alpha_{1}-\alpha_{2}\right)\left|\sinh 2 \alpha_{1}\right|\left|\sinh 2 \alpha_{2}\right| \tag{3.17}
\end{equation*}
$$

The radial part of the Laplace equation has the form
$\left[\sum_{j=1}^{2} \frac{1}{\sqrt{g}} \frac{\partial}{\partial \alpha_{j}} \sqrt{g} \frac{\partial}{\partial \alpha_{j}}-\frac{l_{j}\left(l_{j}+1\right)}{\sinh ^{2} 2 \alpha_{j}}\right] \vartheta\left(\alpha_{1}, \alpha_{2}\right)=\left[\sigma_{1}\left(\sigma_{1}+6\right)+\sigma_{2}\left(\sigma_{2}+2\right)\right] \vartheta\left(\alpha_{1}, \alpha_{2}\right)$
where $l(l+1)$ is the eigenvalue of the Laplace operator on the group $S U(2)$. By the substitution

$$
\begin{equation*}
\vartheta\left(\alpha_{1}, \alpha_{2}\right)=\sinh ^{-1}\left(\alpha_{1}+\alpha_{2}\right) \sinh ^{-1}\left(\alpha_{1}-\alpha_{2}\right) \omega\left(\alpha_{1}, \alpha_{2}\right) \tag{3.19}
\end{equation*}
$$

we get

$$
\begin{align*}
{\left[\frac{1}{4} \sum_{j=1}^{2} \frac{\partial^{2}}{\partial \alpha_{j}^{2}}\right.} & \left.+\frac{1}{2} \operatorname{coth} 2 \alpha_{j} \frac{\partial}{\partial \alpha_{j}}-\frac{\frac{1}{4} l_{j}\left(l_{j}+1\right)}{\sinh ^{2} 2 \alpha_{j}}\right] \omega\left(\alpha_{1}, \alpha_{2}\right) \\
& =\frac{1}{4}\left[\sigma_{1}\left(\sigma_{1}+6\right)+\sigma_{2}\left(\sigma_{2}+2\right)+8\right] \omega\left(\alpha_{1}, \alpha_{2}\right) \tag{3.20}
\end{align*}
$$

The separation in the variables α_{1} and α_{2} of the solutions $\omega\left(\alpha_{1}, \alpha_{2}\right)$ of the equation is evident and we give rise to the eigenvalue problems of the radial part of the Laplace operator on a two-dimensional two-sheeted hyperboloid [7] on each variable $\tau_{1}=2 \alpha_{1}$ and $\tau_{2}=2 \alpha_{2}$. Finally, the substitution

$$
\begin{equation*}
\omega\left(\alpha_{1}, \alpha_{2}\right)=\sinh ^{-1 / 2} 2 \alpha_{1} \sinh ^{-1 / 2} 2 \alpha_{2} \psi\left(\alpha_{1}, \alpha_{2}\right) \tag{3.21}
\end{equation*}
$$

reduces equations (3.20) to the two-particle one-dimensional Schrödinger equation with potentials

$$
\begin{align*}
& V\left(\tau_{1}, \tau_{2}\right)=\sum_{j=1}^{2} \frac{\frac{1}{4} l_{j}\left(l_{j}+1\right)-\frac{1}{4}}{\sinh ^{-2} \tau_{j}} \\
& E=-\frac{1}{4} \sigma_{1}\left(\sigma_{1}+6\right)-\frac{1}{4} \sigma_{2}\left(\sigma_{2}+2\right)-\frac{10}{4}=\left(\frac{1}{2} \mathrm{i} \rho\right)^{2}+\left(\frac{1}{2} \mathrm{i} \rho_{2}\right)^{2} \tag{3.22}
\end{align*}
$$

where $\tau_{j}=2 \alpha_{j}, \sigma_{1}=-3+\mathrm{i} \rho_{1}, \sigma_{2}=-1+\mathrm{i} \rho_{2}$. The ψ-function is represented in the form

$$
\begin{equation*}
\Psi\left(\tau_{1}, \tau_{2}\right)=\frac{4}{\rho_{1}^{2}-\rho_{2}^{2}}\left[\Psi_{\rho_{1}}\left(\tau_{1}\right) \Psi_{\rho_{2}}\left(\tau_{2}\right)-\Psi_{\rho_{1}}\left(\tau_{2}\right) \Psi_{\rho_{2}}\left(\tau_{1}\right)\right] \tag{3.23}
\end{equation*}
$$

with

$$
\begin{align*}
\Psi\left(2 \alpha_{j}, \rho_{j} / 2\right)= & \frac{\Gamma\left(\frac{1}{2}+n_{j}+\mathrm{i} \rho_{j} / 2\right)}{\Gamma\left(\frac{1}{2}+\mathrm{i} \rho_{j} / 2\right) \Gamma\left(n_{j}+1\right)}\left(\sinh \alpha_{j}\right)^{\frac{1}{2}+n}\left(\cosh \alpha_{j}\right)^{\frac{1}{2}-n} \\
& \times F\left(\frac{1}{2}+\frac{1}{2} \mathrm{i} \rho_{j}, \frac{1}{2}-\frac{1}{2} \mathrm{i} \rho_{j}, n+1 ;-\sinh ^{2} \alpha_{j}\right) \tag{3.24}
\end{align*}
$$

where $\sqrt{E_{j}}=\rho_{j}$ and $n_{j}=\frac{1}{2} \sqrt{l_{j}\left(l_{j}+1\right)}, j=1,2$.
These solutions and the general one's related to $\operatorname{SS} X=U(p, q) / U(p) \times U(q)$ were found by Berezin and Karplevich [8].

Acknowledgments

I am grateful to my assistant M Sezgin for helping me in the preparation of this paper and I H Duru and G A Kerimov for discussions. The support of the research from TÜBITAK is gratefully acknowledged.

References

[1] Verdiyev Yi A 1997 Plane waves, integrable quantum systems, Green functions and the groups $S O(p, q)$, $p \leqslant q$ J. Phys. A: Math. Gen. 304089
[2] Vilenkin N Ya and Klimyk A U 1993 Representation of Lie Groups and Special Functions (Dortrecht: Kluwer)
[3] Helgason S 1974 Eigenspaces of the Laplacian, integral representations and irreducibility J. Funct. Anal. 17 328-53
[4] Facaut J 1979 Distribution spherique sur les espaces hyperboliques J. Math. Pure Appl. 58 369-444
[5] Helgason S 1984 Groups and Geometric Analysis (New York: Academic)
[6] Barut A O 1994 Noncompact Lie Groups and some of their Applications (NATO ASI, Series C, 429) ed A Tanner and R Wilson (Dortrecht: Kluwer) p 103
[7] Dane C and Verdiyev Y A 1996 Integrable systems of group $S O(1,2)$ and Green functions J. Math. Phys. 3739
[8] Berezin F A and Karpelevich F I 1958 Zonal spherical functions and Laplace operators on some symmetries spaces Dokl. Akad. Nauk. SSSR 118 9-12 (in Russian)

[^0]: \dagger On leave of absence from the Physical Institute of the Academy of Science of Azerbaijan Republic.

