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Abstract. Plane waves on symmetric spaces (SS)Xc ≡ SU(p, q)/S(U(p) ⊗ U(q)), p 6
q = 2, 3, . . . , are constructed. The integrablen-body quantum systems related to SSX are
considered.

1. Introduction

This paper is a continuation of the paper concerning the plane waves and integrable quantum
systems of the groupSO(p, q) [1]. Hence, we refer to this reference for details. Here
we have considered the spaces related with Cartan involutive automorphism of the group
U(p, q), p 6 q = 2, 3, . . . , namely the symmetric Riemannian and pseudo-Riemannian
spaces with rank equal top = 1, 2, . . .

Xc ≡ SU(p, q)/S(U(p)⊗ U(q)) Zc ≡ U(p, q)/U(1)⊗ U(p − 1, q).

We construct the plane waves on SSXc and Zc and calculate Harish–Chandra’sc-
functions. Here we give an example of the integrable quantum system related to SS,
SU(2, 2)/S(U(2)⊗ U(2)).

The paper is organized as follows. In section 2 for completeness and to fix the notation
we construct the plane waves on SS with rank 1 and give the expression for the Harish–
Chandrac-functions. In section 3 the main result on construction of the plane waves
on SS with rankp > 1 and consideration of integrable quantum systems related to SS
SU(2, 2)/S(U(2)⊗ U(2)) are presented.

2. Plane waves on SS of rank 1 of the groupU( p, q), p6 q

In this section we construct plane waves on SS defined by quadratic forms in the space
Cp,q .

2.1. Plane waves on SS of the groupU(1, q)

We use the notationz = (z0, z1, . . . , zq) for the elements of an (n = 1+ q)-dimensional
complex vector spaceC1,q . In C1,q we define the bilinear product [z, z′] = z0z

′
0 − z1z

′
1 −
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· · · − zqz′q . Pointsz such that [z, z] = 1 form a complex hyperboloidHq
c in C1,q . The

stabilizer of
◦
z = (1, 0, . . . ,0) ∈ Hq

c coincides with the subgroupU(q). Therefore,

Hq
c ≈ U(1, q)/U(q). (2.1)

Every pointz ∈ Hq
c is representable in the form

z = (eiϕ0ς0, eiϕ1ς1, . . . ,eiϕq ςq) where 06 ϕi < 2π , ςi > 0
i = 0, 1, 2, . . . , q, ς = (ς1, . . . , ςq) (2.2)

is the point of the real hyperboloid [ς, ς ] = ς2
0 − · · · − ς2

q = 1. From coshkr = Re[z,
◦
z] =

cosϕ0ς0 it follows that the distance has real and imaginary parts. Hence the spaceH
q
c is a

symmetric pseudo-Riemannian space. This fact can be seen by identifying the spaceC1,q

with the pseudo-Euclidean spaceR2,2q . Then we have

U(1, q)/U(q) ≈ SO(2, 2q)/SO(1, 2q). (2.3)

By identifying the points eiϕz, 0 6 ϕ < 2π , of Hq
c we have obtained a symmetric

Riemannian space:

Xc ≈ U(1, q)/U(1)× U(q) ≈ SU(1, q)/S(U(1)× U(q)). (2.4)

Indeed, the transitive motion group ofX coincides with SU(1, q). The subgroup
S(U(1) × U(q)) is the stabilizer of the point

◦
x = (eiϕ, 0, . . . ,0) ∈ Xc. Every point

x ∈ Xc is representable of the form

x = (ς0, eiϕ1ς1, . . . ,eiϕq ςq). (2.5)

The distance between points
◦
x = (1, 0, . . . ,0) andx defined by the formula

coshkr = Re[
◦
x, x] = ς0 > 1. (2.6)

Points y ∈ C1,q for which [y, y] = 0, form the complex coneYc in C1,q . Every
point y ∈ C1,q is representable in the form

y = (eiϕ0ν0, eiϕ1ν1, . . . ,eiϕq νq) where 06 ϕi 6 2π , νi > 0, i = 0, 1, . . . , q. (2.7)

ν = (ν0, ν1, . . . , νq) is the point real coneY :[ν, ν] = 0.
The maximal degenerate representation of the groupU(1, q) can be constructed in

the spaceDσ of infinitely differentiable homogeneity functionsF(y) with homogeneously
degreeσ on a coneYc [2]:

F(ay) = aσF (y) a > 0 y ∈ Yc (2.8)

and with conditionF(uy) = F(y), |u| = 1. The representation

Tσ (g)F (y) = F(yg) g ∈ SU(1, q) (2.9)

can be realized in the space of infinitely differentiable functions on intersections of the cone,
for example on the complex sphereSq−1

c = SU(q)/SU(q − 1):

Tσ (g)f (s) = |(sg)|σ f (sg) g ∈ SU(1, q) (2.10)

wheres = y|y0=1 = (1, η), y = eαeiϕ0s, η ∈ Sq−1
c , sg = sg/(sg)0.

From y ′ = yg we have

|(sg)0| = eα
′−αsg = (1, ηg). (2.11)

The representationTσ (g), g ∈ SU(1, q), is a unitary representation with respect to the scalar
product

〈f1, f2〉 =
∫
f1(η)f2(η) dη (2.12)
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where dη is an invariant volume onSc, if σ = −q + iρ, ρ ∈ [0,∞) (the principal series).
Indeed from the relations

y ′ = yg ⇒ y ′0 = y0(sg)0⇒ eα
′
eiϕ′0 = eαeiϕ0(sg)0

and from the invariant of the volume element onYc, dy = dy ′, where dy = e2qαdα dϕ0 dη,
we have

dη = |(sg)0|2qdη′. (2.13)

It follows that the invariant condition of the scalar product〈f1, f2〉 under the representation
equation (2.10) isσ+σ+2q = 0. The representationsTσ (g) andD−2q−σ (g), g ∈ SU(1, q)
are equivalent.

As in the case of the groupSO(1, q) [1] we find that the zonal spherical functions of
the representationTσ (g), g ∈ SU(1, q) are given by the formula

T σOk;Ok (gx) =
∫
S
q−1
0

|[x, s]|σ dη x ∈ Xc. (2.14)

Here |Ok〉 is the invariant vector with respect to the representation

Tσ (k), k ∈ U(1)× U(q).
The plane waves|[x, s]|σ are the eigenfunctions of the Laplace–Beltrami operator on the
SSXc:

1L,B |[x, s]|σ = −σ(σ + 2q)|[x, s]|σ . (2.15)

The zonal spherical functionsT σOk;Ok (a(α)) satisfy the equation(
1

sinh2q α

d

dα
sinh2q α

d

dα

)
tσOk;Ok (a(α)) = σ(σ + 2q)tσOk;Ok (a(α)) (2.16)

for the Harish–Chandrac-function from (2.14) we have the integral representation

C(σ) =
∫ 2π

0

∫ 2π

0
|1− eiϕ cosθ |σ sin2q−3 cosθ dθ dϕ. (2.17)

Calculation of this integral was done by Helgason [3]:

C(σ) = 0(−σ − q)
[0(−σ/2)]2

. (2.18)

The orthogonality and completeness conditions for the plane waves on SSXc of the group
U(1, 2) are similar to those of the plane waves on SSX of the groupSO(1, q).

To construct the plane waves on SSHq
c we consider the representationTσ,m(g),

g ∈ U(1, q) in the spaceDσ,m of the functionsF(y), y ∈ Yc with the condition [2]

F(uy) = umF(y) |u| = 1 (2.19)

where m is an integer. The zonal spherical function of the representationTσ,m(g),
g ∈ U(1, q), has the form

t
σ,m
Ok;Ok (d0(e

iϕ)a(α)) = e−imϕt
σ,m
Ok;Ok (a(α)) (2.20)

whered0(eiϕ) = diag(eiϕ, 1, . . . ,1) ∈ U(1), |Ok〉 is an invariant vector with respect to the
representationTσ,m(k), k ∈ U(q). From equation (2.19) it follows that

t
σ,k
Ok;Ok (gz) =

∫
S
q−1
c

[z, s](σ+m)/2[z, s]
(σ−m)/2

dη. (2.21)
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The plane waves [z, s](σ+m)/2[z, s]
(σ−m)/2

are eigenfunctions of the Laplace–Beltrami
operator on SSHq

c . The zonal spherical functionstσOk;Ok (a(α)) satisfy the equation(
1

sinh2q−1 α coshα

d

dα
sinh2q−1 α coshα

d

dα
+ m2

cosh2 α

)
t
σ,m
Ok;Ok (α) = σ(σ + 1)tσ,mOk;Ok (α).

(2.22)

For the Harish–Chrandrac-functions from equation (2.21) we obtain the integral
representation

Cm(α) =
∫ 2π

0

∫ 2π

0
(1− eiϕ cosθ)(σ+m)/2(1− eiϕ cosθ)(σ−m)/2 sin2q−3 θ cosθ dθ dϕ. (2.23)

The expression of theCm(σ)-function has the form [2]

Cm(σ) = 0(−σ − q)
0((−σ −m)/2)0((−σ +m)/2) . (2.24)

The substitution

T
σ,m
Ok;Ok (α) = sinh−q+1/2 α cosh−1/2 α9(α) (2.25)

reduces (2.22) to the Schrödinger equation with potential

V = [(q − 1)2− 1
4] sinh−2 α − (m2− 1

4) cosh−2 α. (2.26)

The orthogonality conditions for plane waves on SSHq
c are similar to formula (2.18) from

[1] for the plane waves on SSX of the groupSO(1, q), but in the completeness condition
over σ there is a summation over the integerm.

2.2. Plane waves on SS of the groupU(p, q)

In the complex vector spaceCp,q we define the bilinear product

[z, z′] = z1z
′
1+ · · · + zpz′p − zp+1z

′
p+1− · · · − zp+qz′p+q.

The pointz such that [z, z] = ±1 forms complex hyperboloidsHp−1,q
c andHp,q−1

c in Cp,q ,
respectively. Every pointHp−1,q

c (or Hp,q−1
c ) is representable in the form

z = (eiϕ1ς1, . . . ,eiϕpςp, eiϕp+1ςp+1, . . . ,eiϕp+q ςp+q) (2.27)

where 06 ϕi 6 2π , ςi > 0, i = 1, . . . , p+q, ς = (ς1, . . . , ςp, ςp+1, . . . , ςp+q) is the point
of the real hyperboloidz+ (or z−): [ς, ς ] = +1 (or [ς, ς ] = −1). The pointsy ∈ Cp,q for
which [y, y] = 0 form a complex coneYc in Cp,q . Every pointy ∈ Yc is representable in
the form

y = (eiϕ1ν1, . . . ,eiϕpνp, eiϕp+1νp+1, . . . ,eiϕp+q νp+q) (2.28)

where 06 ϕ1 6 2π , ν1 > 0, i = 1, . . . , p + q, ν = (ν1, . . . , νp, νp+1, . . . , νp+q) is the
point real coneY :[ν, ν] = 0.

As in the case of the groupSO(p, q) [1] we find that the zonal spherical functions of
the representationTσ (g), g ∈ U(p, q) in the mixed basis are given by the formula

TOH ;OK (gz) =
∫
S
p−1
c ×Sq−1

c

|[z, s]|σ dη. (2.29)

Here|Ok〉 is the invariant vector with respect to the representationtσ (k), k ∈ U(p)×U(q)
and |OH 〉 is the invariant vector with respect to the representationTσ (h), h ∈ H ≈
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U(p−1, q) (orU(p, q−1)). The pointsz ∈ Hp−1,q
c (orHp,q−1

c ) ands ∈ Yc are represented
in the bispherical coordinate systems onHp−1,q

c (or Hp,q−1
c ) andYc:

z = (coshαη(p), sinhαη(q)) or z = (sinhαη(p), coshαη(q)) (2.30)

and s = (η(p)η(q)), η(p) ∈ Sp−1
c , η(q) ∈ Sq−1

c , respectively. The zonal spherical functions
T σOH ;OK (gz) = T σOH ;OK (g(α)), z ∈ H

p−1,q
c satisfy the equation(

1

sinh2p−1 α cosh2q−1 α

d

dα
sinh2p−1 α cosh2q−1 α

d

dα

)
T σOH ;OK (a(α))

= σ(σ + 2p + 2q − 2)T σOH ;OK (a(α)). (2.31)

As in the case of the groupSO(p, q) for the Harish–Chandrac-function we have

Cp,q(σ ) =
∫ π/2

0

∫ π/2

0

∫ π/2

0
| cosθ − eiϕ cosω|−σ−2p+2q+2 sin2p−3 θ cosθ sin2q−3

×ω cosω dθ dω dϕ. (2.32)

By reparametrization, this integral can be simplified [4] and we have

Cp,q(σ ) =
∫ π

0

∫ π

0
| cosθ − cosω|−σ−2p+2q+2 sin2p−2 θ sin2q−2ω dθ dω

= 0(−σ − p − q + 1)0((−σ + 3/2)− p − q)√
π0(−σ/2)0((−σ/2)− p + 1)0((−σ/2)− q + 1)

. (2.33)

Note that this expression for thec-function can be obtained from the expression of thec-
function of the groupSO(p, q) (see equation (2.63) from [1]) by the substitutionp→ 2p,
q → 2q.

3. Plane waves on SS of rankp > 1 of the groupU (p, q)

From the definitiongIgt = I , g ∈ U(p, q) of the pseudo-unitary groupU(p, q) it
follows that the elements of the maximal compact subgroupK = U(p) × U(q) is
fixed under the involutive automorphismσ(g) = IgI . The symmetric Riemannian
spaceXc = U(p, q)/U(p) × U(q) with fixed point

◦
x = 1-unit has dimensiond =

(p + q)2− p2− q2 = 2pq. The centralizer subgroupM of A in K has the form

M = diag(u1, . . . , up, U(q − p), up, . . . , u1), uiεU(1). (3.1)

For the Cartan decompositionG = K ′AK of the groupU(p, q) we have

x = ka2k−1 k ∈ K, a ∈ A. (3.2)

The a(α1, . . . , αp) = ∏p

j=1 a(α
j ) are hyperbolic rotations in planes (xj , xp+q+1−j ), j =

1, . . . , p. We define the coneYc with fixed point
◦
y1 (see equation (3.9) from [1]) by the

formula

y1 = g ◦y1σ(g
−1). (3.3)

The stabilizer of the fixed point
◦
y1 in U(p, q) coincides with the semidirect product of the

subgroupU(p − 1, q − 1) andN consists of the matrices

n =


1− iγ + z2/2, z1, . . . , zp−1, zp, . . . , zp+q−2, iγ − z2/2
−z1 z1

−zp−1 I zp−1

zp − zp
zp+q−2 − zp+q−2

−iγ + z2/2, z1, . . . , zp−1, zp, . . . , zp+q−2, 1+ iγ − z2/2

 (3.4)
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whereI is the(p+q−2)× (p+q−2) unit matrix,z2 = z2
1+· · ·+z2

p−1−z2
p−· · ·−z2

p+q−2
andγ is a real parameter.

For the Iwasava decomposition we have

y1 = e2α1
k
◦
y1k
−1 y,

◦
y ∈ Yc k ∈ U(p)U(q). (3.5)

The metric on the SSXc is defined by the formula

[x1, x2] = 1
2 tr(Ix1Ix

t
2) x1, x2 ∈ Xc. (3.6)

For the metric matrix in the SSXc we have

gij = 1

n
tr(I ẋτi , ẋtτj ) (3.7)

where ẋτi = dx/dτi , τi are coordinates of the SS. The radial part of the Laplace–Beltrami
operator on SS is defined by the formula [5]

1√
g

p∑
j=1

∂

∂xj
√
q
∂

∂xj

where
√
g = √det(gij ). For

√
g we have

√
g =

p∏
i=j

sinh2(αi − αj ) sinh2(αi + αj ) sinh2(q−p) αi sinh 2αi. (3.8)

Here Cartan coordinatesαi − αj , αi + αj , αi , 2αi of the groupU(p, q) correspond
to the positive restricted rootsωi − ωj , ωi + ωj , ωi , 2ωi of the algebra of the group
U(p, q) with multiplicity 2, 2, q − p and 1, respectively. The irreducible representations
Tχ1(g), χ1 = (σ1, χ2), g ∈ U(p, q), of the groupU(p, q) we construct in the spaceDχ1 of an
infinitely differentiable vector function with homogeneity degreeσ1 and with the condition
F(uy) = F(y), u ∈ U(1), whose values belong to the spaceDχ2 of the representation
Tχ2(g̃), g̃ ∈ SU(p − 1, q − 1). The representation formula can be written in the form

Tχ(g)f (s1) = e(α
′
g−α′)σ1tχ2(g̃(s1, g))f (gs1σ(g−1)) g ∈ U(p, q) (3.9)

wherey1 = eα
′
s1, s1 = k ◦y1k

−1, χ1 = (σ1, χ2), g̃ is the element of the stability subgroup

U(p − 1, q − 1); f (s) is a vector function on the intersection of the cones1 = k
◦
y1k
−1

with values in the representation spaceDχ2 of the stability subgroupU(p− 1, q − 1). The
expressions e(α

′
g−α′)σ1 and g̃(s1, g) are defined from the relations

y ′1 = gy1σ(g
−1) e(α

1
g−α1)k′−1gk = ng̃(s1, g). (3.10)

It follows that

e2(α′g−α′) = 1
2| tr(gs1σ(g−1)|. (3.11)

The unitary representationTχ1(g), g∈U(p, q), with respect to the scalar product(f1, f2) =∫ 〈f1(s)f2(s)〉 ds is defined byσ1 = −(p + q) + 1+ iρ1, ρ1 ∈ [0,∞] (principal series).
Here〈 〉 denotes the inner product of vector-valued functions in the spaceDχ2

ds = dς(p)dξ (q) ξ (q) ∈ U(p)/U(p − 1) ς(p) ∈ U(q)/U(q − 1).

For the elementgx , which is defined byx = gx ◦xσ(g−1
x ), from (3.11) it follows that

e
2(α′

g
−1
x

−α′) = 1
2| tr(Ikxa2

xk
−1
x I s1)| = |[x, s1]|. (3.12)

For simplicity let us consider the case of the groupU(2, 2). Concerning the physics of the
eight-dimensional SSX = U(2, 2)/U(2) × U(2), see the report [6] which was given by
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A O Barut in the conference on ‘Noncompact Lie Groups and some of their Applications’.
In this case the zonal spherical functions on SSXc = U(2, 2)/U(2)×U(2) are defined by
the formula

t
χ

Ok;Ok (Igχ) = 〈Tχ(Ig−1
x )1, 1〉 =

∫
|[x, s1]|σ1/2t

σ2
Ok;Ok (gx) ds1 (3.13)

whereσ1 = −3+iρ1, σ2 = −1+iρ2, ρ1, ρ2 ∈ [0,∞). For the zonal spherical functiontσ2
Ok;Ok

of the stability subgroupU(1, 1) we have a similar integral representation (see section 3
from [1]). So we have

t
χ

Ok;Ok (gχ) =
∫
s2
c×s2

c

∫
s1
c×s1

c

|[x, s1]|(σ1−σ2)/2|[x1ks2k
−1] − [x, s1] tr(n2)|σ2 ds1 ds2. (3.14)

The plane waves

|[x, s1]|(σ1−σ2)/2|[x1ks2k
−1] − [x, s1] tr(n2)|σ2 (3.15)

are eigenfunctions of the Laplace–Beltrami operator on SSXc = U(2, 2)/U(2) × U(2).
Harish–Chandra’sc(σ1, σ2)-functions are represented in the formc(σ1, σ2) = c2,2c1,1, where
the expressions ofc2,2 andc1,1 are defined by formula (2.33).

Consider the quantum integrable system related to SSX = U(2, 2)/U(2)× U(2).
x = k(ϕ1, θ1, ψ1ϕ2, θ2, ψ2)a

2(α1, α2)k
−1(ϕ1, θ1, ψ1ϕ2, θ2ψ2) (3.16)

where

k =
(
(a1/− b1)(b1/a1) 0

0 (a2/− b2)(b2/a2)

)
aj = cos

θj

2
ei(ϕj+ψj )

bj = sin
θj

2
ei(ϕj−ψj ) j = 1, 2

a(α1, α2) =


coshα1 0 0 sinhα1

0 coshα2 sinhα2 0
0 sinhα2 coshα2 0

sinhα1 0 0 coshα1

 .
Calculating the metric matrix by the formula

gij = 1
2 tr(Ixti Ixtj ) i, j = 1, . . . ,8

whereti are parameters of the SSX, we have
√
g = sinh2(α1+ α2) sinh2(α1− α2)| sinh 2α1| | sinh 2α2|. (3.17)

The radial part of the Laplace equation has the form[ 2∑
j=1

1√
g

∂

∂αj

√
g
∂

∂αj
− lj (lj + 1)

sinh2 2αj

]
ϑ(α1, α2) = [σ1(σ1+ 6)+ σ2(σ2+ 2)]ϑ(α1, α2) (3.18)

where l(l + 1) is the eigenvalue of the Laplace operator on the groupSU(2). By the
substitution

ϑ(α1, α2) = sinh−1(α1+ α2) sinh−1(α1− α2)ω(α1, α2) (3.19)

we get[
1

4

2∑
j=1

∂2

∂α2
j

+ 1

2
coth 2αj

∂

∂αj
−

1
4lj (lj + 1)

sinh2 2αj

]
ω(α1, α2)

= 1

4
[σ1(σ1+ 6)+ σ2(σ2+ 2)+ 8]ω(α1, α2). (3.20)
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The separation in the variablesα1 andα2 of the solutionsω(α1, α2) of the equation is evident
and we give rise to the eigenvalue problems of the radial part of the Laplace operator on
a two-dimensional two-sheeted hyperboloid [7] on each variableτ1 = 2α1 and τ2 = 2α2.
Finally, the substitution

ω(α1, α2) = sinh−1/2 2α1 sinh−1/2 2α2ψ(α1, α2) (3.21)

reduces equations (3.20) to the two-particle one-dimensional Schrödinger equation with
potentials

V (τ1, τ2) =
2∑

j=1

1
4lj (lj + 1)− 1

4

sinh−2 τj

E = − 1
4σ1(σ1+ 6)− 1

4σ2(σ2+ 2)− 10
4 = ( 1

2iρ)2+ ( 1
2iρ2)

2 (3.22)

whereτj = 2αj , σ1 = −3+ iρ1, σ2 = −1+ iρ2. Theψ-function is represented in the form

9(τ1, τ2) = 4

ρ2
1 − ρ2

2

[9ρ1(τ1)9ρ2(τ2)−9ρ1(τ2)9ρ2(τ1)] (3.23)

with

9(2αj , ρj/2) =
0( 1

2 + nj + iρj/2)

0( 1
2 + iρj/2)0(nj + 1)

(sinhαj )
1
2+n(coshαj )

1
2−n

×F( 1
2 + 1

2iρj , 1
2 − 1

2iρj , n+ 1;− sinh2 αj ) (3.24)

where
√
Ej = ρj andnj = 1

2

√
lj (lj + 1), j = 1, 2.

These solutions and the general one’s related to SSX = U(p, q)/U(p) × U(q) were
found by Berezin and Karplevich [8].
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